Search results for "atomic layer deposition"
showing 10 items of 140 documents
Silicon Surface Passivation by ALD-Ga2O3: Thermal vs. Plasma-Enhanced Atomic Layer Deposition
2020
Silicon surface passivation by gallium oxide (Ga2O3) thin films deposited by thermal- and plasma-enhanced atomic layer deposition (ALD) over a broad temperature range from 75 °C to 350 °C is investigated. In addition, the role of oxidant (O3 or O-plasma) pulse lengths insufficient for saturated ALD-growth is studied. The material properties are analyzed including the quantification of the incorporated hydrogen. We find that oxidant dose pulses insufficient for saturation provide for both ALD methods generally better surface passivation. Furthermore, different Si surface pretreatments are compared (HF-last, chemically grown oxide, and thermal tunnel oxide). In contrast to previous reports, t…
Atomic Layer Deposition and Properties of Lanthanum Oxide and Lanthanum-Aluminum Oxide Films
2006
Atomic layer deposition (ALD) of lanthanum oxide on glass and silicon substrates was examined using lanthanum silylamide, La[N(SiMe 3 ) 2 ] 3 , and water as precursors in the substrate temperature range of 150-250 °C. The effect of pulse times and precursor evaporation temperature on the growth rate and refractive index was investigated. The films remained amorphous regardless of the deposition conditions. The resulting La 2 O 3 films contained noticeable amounts of hydrogen and silicon and were chemically unstable while stored in ambient air. Lanthanum aluminum oxide films were achieved with stoichiometry close to that of LaAlO 3 at 225°C from La[N(SiMe 3 ) 2 ] 3 , Al(CH 3 ) 3 , and H 2 O.…
The α and γ plasma modes in plasma-enhanced atomic layer deposition with O2-N2 capacitive discharges
2017
Two distinguishable plasma modes in the O2–N2 radio frequency capacitively coupled plasma (CCP) used in remote plasma-enhanced atomic layer deposition (PEALD) were observed. Optical emission spectroscopy and spectra interpretation with rate coefficient analysis of the relevant processes were used to connect the detected modes to the α and γ modes of the CCP discharge. To investigate the effect of the plasma modes on the PEALD film growth, ZnO and TiO2 films were deposited using both modes and compared to the films deposited using direct plasma. The growth rate, thickness uniformity, elemental composition, and crystallinity of the films were found to correlate with the deposition mode. In re…
Evaluation and Comparison of Novel Precursors for Atomic Layer Deposition of Nb2O5 Thin Films
2012
Atomic layer deposition (ALD) of Nb2O5 thin films was studied using three novel precursors, namely, tBuN═Nb(NEt2)3, tBuN═Nb(NMeEt)3, and tamylN═Nb(OtBu)3. These precursors are liquid at room temperature, present good volatility, and are reactive toward both water and ozone as the oxygen sources. The deposition temperature was varied from 150 to 375 °C. ALD-type saturative growth modes were confirmed at 275 °C for tBuN═Nb(NEt2)3 and tBuN═Nb(NMeEt)3 together with both oxygen sources. Constant growth rate was observed between a temperature regions of 150 and 325 °C. By contrast, amylN═Nb(OtBu)3 exhibited limited thermal stability and thus a saturative growth mode was not achieved. All films we…
Atomic Layer Deposition of Osmium
2011
Growth of osmium thin films and nanoparticles by atomic layer deposition is described. The Os thin films were successfully grown between 325 and 375 °C using osmocene and molecular oxygen as precursors. The films consisted of only Os metal as osmium oxides were not detected in X-ray diffraction measurements. Also the impurity contents of oxygen, carbon, and hydrogen were less than 1 at % each at all deposition temperatures. The long nucleation delay of the Os process facilitates either Os nanoparticle or thin film deposition. However, after the nucleation delay of about 350 cycles the film growth proceeded linearly with increasing number of deposition cycles. Also conformal growth of Os thi…
Atomic Layer Deposition of LiF Thin Films from Lithd, Mg(thd)2, and TiF4 Precursors
2013
Lithium fluoride is an interesting material because of its low refractive index and large band gap. Previously LiF thin films have been deposited mostly by physical methods. In this study a new way of depositing thin films of LiF using atomic layer deposition (ALD) is presented. Mg(thd)2, TiF4 and Lithd were used as precursors, and they produced crystalline LiF at a temperature range of 300–350 °C. The films were studied by UV–vis spectrometry, field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), atomic force microscopy (AFM), time-of-flight elastic recoil detection analysis (ToF-ERDA), and energy dispersive X-ray spectroscopy (EDX). In addition, film adhesion was t…
Investigation of ZrO[sub 2]–Gd[sub 2]O[sub 3] Based High-k Materials as Capacitor Dielectrics
2010
Atomic layer deposition (ALD) of ZrO 2 ―Gd 2 O 3 nanolaminates and mixtures was investigated for the preparation of a high permittivity dielectric material. Variation in the relative number of ALD cycles for constituent oxides allowed one to obtain films with controlled composition. Pure ZrO 2 films possessed monoclinic and higher permittivity cubic or tetragonal phases, whereas the inclusion of Gd 2 O 3 resulted in the disappearance of the monoclinic phase. Changes in phase composition were accompanied with increased permittivity of mixtures and laminates with low Gd content. Further increase in the lower permittivity Gd 2 O 3 content above 3.4 cat. % resulted in the decreased permittivity…
2021
Atomic layer deposition (ALD) technology has unlocked new ways of manipulating the growth of inorganic materials. The fine control at the atomic level allowed by ALD technology creates the perfect conditions for the inclusion of new cationic or anionic elements of the already-known materials. Consequently, novel material characteristics may arise with new functions for applications. This is especially relevant for inorganic luminescent materials where slight changes in the vicinity of the luminescent centers may originate new emission properties. Here, we studied the luminescent properties of CaS:Eu by introducing europium with oxygen ions by ALD, resulting in a novel CaS:EuO thin film. We …
Atomic layer deposition of aluminum oxide on modified steel substrates
2016
Abstract Al 2 O 3 thin films were grown by atomic layer deposition to thicknesses ranging from 10 to 90 nm on flexible steel substrates at 300 °C using Al(CH 3 ) 3 and H 2 O as precursors. The films grown to thicknesses 9–90 nm covered the rough steel surfaces uniformly, allowing reliable evaluation of their dielectric permittivity and electrical current densities with appreciable contact yield. Mechanical behavior of the coatings was evaluated by nanoindentation. The maximum hardness values of the Al 2 O 3 films on steel reached 12 GPa and the elastic modulus exceeded 280 GPa.
TiO2 anatase films obtained by direct liquid injection atomic layer deposition at low temperature
2014
International audience; TiO2 thin films were grown by direct liquid injection atomic layer deposition (DLI-ALD) with infrared rapid thermal heating using titanium tetraisopropoxide and water as precursors. This titanium tetraisopropoxide/water process exhibited a growth rate of 0.018 nm/cycle in a self-limited ALD growth mode at 280 degrees C. Scanning electron microscopy and atomic force microscopy analyses have shown a smooth surface with a low roughness. XPS results demonstrated that the films were pure and close to the TiO2 stoichiometric composition in depth. Raman spectroscopy revealed that the films were crystallized to the anatase structure in the as-deposited state at low temperatu…